Recovery of common vole populations (*Microtus arvalis*) after rodentice application

Susanne Hein¹, Jens Jacob¹

¹ Julius Kuehn Institute, Institute for Plant Protection in Horticulture and Forest, Vertebrate Research, Münster
Background

• common vole = vertebrate pest species

• management: rodenticides

→ detailed information on ecology and behaviour necessary
Objectives

• recovery of common vole populations
 – survival of residents or immigration
 – recovery time/recovery rate
 – kinship analysis?

• population development
 – demographics: sex ratio, reproductive state
 – survival

• life trapping vs. non-invasive hair sampling
Study Area
Trapping & Sampling

- live trapping with Ugglan® Live Traps
- non-invasive sampling with hair tubes
Study Design

- **treatment**
 - 2x8 + 7
 - transect of hair tubes

- **control**
 - 3x8 + 2x7
 - transect of hair tubes

Dimensions:
- 85 m x 50 m
- Transect distances: 25 m, 10 m, 20 m, 15 m, 10 m, 20 m, 25 m
Study Design

• 244 Ugglan Live Traps
 – 23 traps on treatment
 – 38 traps on control
 – 4 replicates

• 268 hair tubes
 – 30 tubes on border treatment/control
 – 37 tubes on control
Measures

- species
- weight
- sex (♀ ♂)
- reproductive status
- PIT (*passive integrated transponder*)
Field Data 2013

- March
- April
- May
- June
- July
- August
- September
- October

voles/100 trap nights
Results I

<table>
<thead>
<tr>
<th>ID</th>
<th>weight [g]</th>
<th>sex</th>
<th>reproductive status</th>
<th>re-captured?</th>
<th>replicate</th>
<th>R/C</th>
<th>trap</th>
<th>occasion</th>
<th>date</th>
<th>tissue sample [ear]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8EE3E</td>
<td>19</td>
<td>f</td>
<td>active</td>
<td>-</td>
<td>1</td>
<td>C</td>
<td>15</td>
<td>1</td>
<td>May-2013</td>
<td>-</td>
</tr>
<tr>
<td>2E250</td>
<td>18.5</td>
<td>f</td>
<td>inactive</td>
<td>-</td>
<td>1</td>
<td>C</td>
<td>25</td>
<td>2</td>
<td>May-2013</td>
<td>+</td>
</tr>
<tr>
<td>29757</td>
<td>5.5</td>
<td>m</td>
<td>inactive</td>
<td>-</td>
<td>1</td>
<td>C</td>
<td>15</td>
<td>5</td>
<td>May-2013</td>
<td>-</td>
</tr>
<tr>
<td>2C50F</td>
<td>5</td>
<td>f</td>
<td>inactive</td>
<td>-</td>
<td>1</td>
<td>C</td>
<td>15</td>
<td>5</td>
<td>May-2013</td>
<td>-</td>
</tr>
<tr>
<td>2BC77</td>
<td>27.5</td>
<td>m</td>
<td>active</td>
<td>-</td>
<td>1</td>
<td>C</td>
<td>5</td>
<td>3</td>
<td>June-2013</td>
<td>+</td>
</tr>
<tr>
<td>2C93B</td>
<td>31</td>
<td>f</td>
<td>a/p</td>
<td>-</td>
<td>4</td>
<td>R</td>
<td>19</td>
<td>4</td>
<td>June-2013</td>
<td>+</td>
</tr>
<tr>
<td>2A09C</td>
<td>13</td>
<td>m</td>
<td>inactive</td>
<td>-</td>
<td>1</td>
<td>C</td>
<td>4</td>
<td>1</td>
<td>July-2013</td>
<td>+</td>
</tr>
<tr>
<td>90D43</td>
<td>21.5</td>
<td>m</td>
<td>active</td>
<td>-</td>
<td>1</td>
<td>C</td>
<td>4</td>
<td>3</td>
<td>July-2013</td>
<td>+</td>
</tr>
<tr>
<td>90ED4</td>
<td>28</td>
<td>f</td>
<td>a/p</td>
<td>-</td>
<td>2</td>
<td>R</td>
<td>15</td>
<td>3</td>
<td>Aug-2013</td>
<td>-</td>
</tr>
<tr>
<td>90ED4</td>
<td>20</td>
<td>f</td>
<td>active</td>
<td>+</td>
<td>2</td>
<td>R</td>
<td>22</td>
<td>1</td>
<td>Sep-2013</td>
<td>+</td>
</tr>
<tr>
<td>918F9</td>
<td>10.5</td>
<td>m?</td>
<td>inactive</td>
<td>-</td>
<td>2</td>
<td>R</td>
<td>7</td>
<td>2</td>
<td>Sep-2013</td>
<td>+</td>
</tr>
<tr>
<td>90ED4</td>
<td>20</td>
<td>f</td>
<td>active</td>
<td>+</td>
<td>2</td>
<td>R</td>
<td>7</td>
<td>2</td>
<td>Sep-2013</td>
<td>+</td>
</tr>
<tr>
<td>2AED4</td>
<td>10</td>
<td>f</td>
<td>inactive</td>
<td>-</td>
<td>2</td>
<td>R</td>
<td>22</td>
<td>3</td>
<td>Sep-2013</td>
<td>+</td>
</tr>
<tr>
<td>90ED4</td>
<td>20</td>
<td>f</td>
<td>active</td>
<td>+</td>
<td>2</td>
<td>R</td>
<td>22</td>
<td>3</td>
<td>Sep-2013</td>
<td>+</td>
</tr>
<tr>
<td>29B9A</td>
<td>11</td>
<td>m</td>
<td>inactive</td>
<td>-</td>
<td>2</td>
<td>R</td>
<td>7</td>
<td>3</td>
<td>Sep-2013</td>
<td>+</td>
</tr>
<tr>
<td>2C50E</td>
<td>11.5</td>
<td>f</td>
<td>inactive</td>
<td>-</td>
<td>2</td>
<td>R</td>
<td>7</td>
<td>3</td>
<td>Sep-2013</td>
<td>+</td>
</tr>
</tbody>
</table>

Red-highlighted IDs indicate that the tissue sample was collected from the ears of these individuals.
Enclosure Pre-Trials

- non-invasive sampling with hair tubes
 - 4 enclosures
 - on runways/next to runways
 - no baiting, baiting with raisins/peanut puffs
Enclosure Pre-Trials

pictures: privat
Results II

Bar graph showing the relative numbers of visits [%] for different baits: without bait, peanut puffs, and raisins, differentiated by location (on runways and next to runways) with a sample size of 28.
Summary

• degradation year

• ecological and behavioural knowledge needed

• live trapping and/or non-invasive hair sampling

• very few data
Outlook

• determination of
 – mechanism of recovery
 – recovery rate & recovery time

• genetic analysis
 – populations dynamics: species, sex, individuals
 – kinship analysis: dispersal behaviour

• calibration live trapping vs. hair tubes
THANK YOU VERY MUCH FOR YOUR ATTENTION!